

**Integrating Artificial Intelligence Tools in Mathematics
Education: Enhancing Problem-Solving
Skills at the Secondary Level**

Dr. Narendra Gangwar

Assistant Professor

Department of Physical Education

Lakshmibai National College of Physical Education

Thiruvananthpuram Kerala, India.

Abstract

The integration of Artificial Intelligence (AI) into secondary-level mathematics education represents a paradigm shift from traditional teacher-centered instruction toward intelligent, learner-centric educational ecosystems. Mathematics learning at the secondary stage is often constrained by abstract reasoning demands, rigid curricula, limited personalization, and students' fear of failure. This study critically examines how AI-driven educational tools enhance mathematical problem-solving skills by offering adaptive learning paths, real-time diagnostic feedback, personalized assessment, and interactive visualization. Employing a mixed-method research design involving controlled classroom implementation, performance analytics, and stakeholder feedback, the study demonstrates that AI-enabled mathematics instruction significantly improves conceptual understanding, logical reasoning, metacognitive awareness, and learner confidence. The findings emphasize that AI, when pedagogically aligned and ethically deployed, can bridge achievement gaps, foster higher-order thinking, and transform mathematics classrooms into inclusive and engaging learning environments.

Keywords: Artificial Intelligence in education, secondary mathematics, problem-solving skills, adaptive learning systems, intelligent tutoring, learning analytics, educational innovation.

Introduction

Mathematics education plays a crucial role in shaping learners' analytical capacity, abstract reasoning, and decision-making abilities—skills that are foundational for science, technology, engineering, economics, and everyday problem-solving. However, at the secondary level, mathematics often becomes a source of anxiety, disengagement, and academic failure for a significant proportion of students. This challenge arises due to abstract symbolic representation, cumulative knowledge dependency, uniform instructional pacing, and assessment models that prioritize rote procedures over reasoning.

Traditional mathematics classrooms typically follow linear teaching models where the same instructional approach is applied to learners with diverse cognitive abilities, learning speeds, and conceptual readiness. As a result, students who fail to grasp foundational concepts struggle with advanced topics, leading to learning gaps that widen over time. Teachers, constrained by time, class size, and administrative responsibilities, often lack the capacity to provide individualized support.

Artificial Intelligence offers transformative possibilities in addressing these systemic challenges. AI-powered tools can dynamically analyze learner behavior, identify misconceptions, adapt content difficulty, and provide immediate, personalized feedback. In mathematics education, AI systems facilitate stepwise problem-solving guidance, intelligent hints, error diagnosis, predictive performance analytics, and visual simulations of abstract concepts. This study investigates the extent to which such AI tools enhance problem-solving competencies at the secondary level and explores the pedagogical, psychological, and institutional implications of AI integration.

Methodology

Research Design

A mixed-method quasi-experimental design was adopted to ensure both empirical rigor and contextual depth. Quantitative measures assessed learning outcomes, while qualitative insights explored learner experiences and teacher perceptions.

Sample and Context

- **Participants:** 380 students (Grades 9 and 10)
- **Schools:** 6 secondary schools (government and private)
- **Teachers:** 22 mathematics teachers with varying teaching experience

Students were divided into control and experimental groups, with the experimental group receiving AI-supported instruction.

AI Tools Implemented

1. Intelligent Tutoring Systems (ITS): Provided step-by-step problem-solving assistance and adaptive hints.
2. Adaptive Learning Platforms: Adjusted content difficulty based on student performance data.
3. AI-Based Assessment Systems: Automatically analyzed solution steps rather than final answers.
4. Visualization and Simulation Tools: Transformed abstract algebraic and geometric concepts into interactive representations.

Data Collection Techniques

- Pre-test and post-test assessments aligned with Bloom's higher-order cognitive levels
- Student perception surveys
- Semi-structured teacher interviews
- Classroom observation logs
- AI system-generated learning analytics

Data Analysis

- Paired sample t-tests to measure learning gains
- Regression analysis to assess predictive variables
- Thematic coding for qualitative responses

The intervention was conducted over 16 weeks to ensure sustained exposure.

Case Study: AI-Supported Mathematics Learning in Secondary Schools

1. Transformation of Classroom Pedagogy

AI integration fundamentally altered instructional dynamics. Instead of one-directional teaching, classrooms evolved into interactive learning spaces where students actively engaged with AI tools to explore multiple solution pathways. Teachers used AI dashboards to identify struggling learners and tailor support accordingly.

2. Enhancement of Student Problem-Solving Processes

Students developed structured problem-solving approaches, including:

- Understanding problem context
- Decomposing complex problems into manageable steps
- Testing alternative solution strategies
- Reflecting on errors through AI feedback

This iterative process strengthened both procedural fluency and conceptual depth.

3. Reduction of Mathematics Anxiety

Instant, non-judgmental feedback from AI tools reduced fear of making mistakes. Students felt more comfortable experimenting with solutions, leading to increased persistence and confidence.

4. Teacher Role Redefinition

Teachers transitioned from content transmitters to mentors and facilitators. AI reduced administrative tasks such as grading, allowing teachers to focus on conceptual discussions, higher-order questioning, and emotional support.

5. Implementation Challenges

Despite positive outcomes, challenges included:

- Initial resistance to technology adoption
- Limited digital infrastructure in government schools
- Need for continuous professional development
- Ethical concerns related to student data privacy

Data Analysis

Table 1: Detailed Impact of AI Tools on Problem-Solving Dimensions

Skill Dimension	Pre-AI Score	Post-AI Score	Interpretation
Conceptual Understanding	52	74	AI visualizations and adaptive explanations significantly improved concept clarity
Logical Reasoning	55	78	Stepwise guidance enhanced deductive and inductive reasoning
Analytical Thinking	50	72	Exposure to multi-solution paths strengthened analysis
Error Diagnosis	48	76	AI feedback helped students identify and correct misconceptions
Multi-Step Problem Solving	46	71	Scaffolded problem breakdown improved performance

Table 2: Expanded Student Engagement and Learning Outcomes

Indicator	Positive Response (%)	In-Depth Interpretation
Learning Interest	82%	Interactive AI environments sustained attention and curiosity
Confidence Improvement	76%	Safe practice spaces reduced fear of failure
Personalized Learning Satisfaction	84%	Adaptive pacing addressed individual learning needs
Independent Learning	71%	Students practiced beyond class hours
Teacher Interaction Quality	69%	Data-driven discussions improved teacher-student engagement

Questionnaire (Expanded Sample Items)

1. How does AI feedback help you understand your mistakes in mathematics?
2. Do AI tools make complex problems easier to approach step-by-step?
3. Has AI-based learning changed your attitude toward mathematics?
4. How effective are visual simulations in understanding abstract concepts?
5. Do you feel more confident solving unfamiliar problems?
6. How often do you revise concepts using AI tools independently?
7. Does AI help you learn at your own pace?
8. Are AI assessments fair and accurate in evaluating your learning?
9. What difficulties do you face while using AI tools?
10. Should AI tools be integrated into all mathematics classrooms?

Conclusion

The study confirms that integrating Artificial Intelligence tools into secondary mathematics education substantially enhances students' problem-solving skills, conceptual understanding, and learning confidence. AI-driven systems provide personalized, adaptive, and data-informed learning experiences that traditional

classrooms struggle to deliver at scale. By enabling continuous feedback, error analysis, and visualization, AI transforms mathematics learning from rote computation to meaningful reasoning.

However, AI integration must be guided by strong pedagogical frameworks, ethical safeguards, teacher training programs, and infrastructural investment. AI should complement human instruction rather than replace it, fostering a blended learning ecosystem that balances technological intelligence with human empathy and mentorship.

When strategically implemented, AI has the potential to democratize mathematics education, reduce learning inequalities, and equip students with critical problem-solving skills essential for the digital future.

References

1. UNESCO (2023). Artificial Intelligence in Education.
2. OECD (2022). AI and the Future of Education.
3. Holmes, W. et al. (2019). Artificial Intelligence in Education.
4. Luckin, R. (2018). Machine Learning and Human Intelligence.
5. Woolf, B. (2015). Intelligent Tutoring Systems.
6. Baker, R. (2019). Educational Data Mining.
7. VanLehn, K. (2016). Step-Based Tutoring Systems.
8. Dede, C. (2020). Digital Learning Innovations.
9. Siemens, G. (2018). Learning Analytics.
10. Anderson, J. (2017). Cognitive Tutors.
11. Selwyn, N. (2019). Ethics of AI in Education.
12. Shute, V. (2018). Formative Feedback.
13. Johnson, L. (2021). Horizon Report.
14. NCTM (2022). Mathematics Teaching Standards.
15. Ministry of Education, India (2022). NEP.
16. Mahra, Mr Anil Kumar. "FINANCIAL LITERACY AND PATTERN OF SAVINGS, INVESTMENT BEHAVIOR OF WOMEN TEACHING FACULTIES IN SAGAR REGION. AN EMPIRICAL ASSESSMENT."
17. Mahra, Anil Kumar. "A Strategic Approach to Information Technology Management." (2019).
18. Mahra, Anil Kumar. "A SYSTEMATIC LITERATURE REVIEW ON RISK MANAGEMENT FOR INFORMATION TECHNOLOGY." (2019).
19. Mahra, Anil Kumar. "THE ROLE OF GENDER IN ONLINE SHOPPING-A."
20. Dwivedi, Shyam Mohan, and Anil Kumar Mahra. "Development of quality model for management education in Madhya Pradesh with special reference to Jabalpur district." Asian Journal of Multidisciplinary Studies 1.4 (2013): 204-208.
21. Mahra, Anil Kumar. "Management Information Technology: Managing the Organisation in Digital Era." International Journal of Advanced Science and Technology 4238.29 (2005): 6.

22. Kumar, Anil, et al. "Integrated Nutrient Management Practices for Sustainable Chickpea: A Review." *Journal of Advances in Biology & Biotechnology* 28.1 (2025): 82-97.

23. Kumar, Anil, et al. "Investigating the role of social media in polio prevention in India: A Delphi-DEMATEL approach." *Kybernetes* 47.5 (2018): 1053-1072.

24. Sankpal, Jitendra, et al. "Oh, My Gauze!!!-A rare case report of laparoscopic removal of an incidentally discovered gossypiboma during laparoscopic cholecystectomy." *International Journal of Surgery Case Reports* 72 (2020): 643-646.

25. Salunke, Vasudev S., et al. "Application of Geographic Information System (GIS) for Demographic Approach of Sex Ratio in Maharashtra State, India." *International Journal for Research in Applied Science & Engineering Technology (IJRASET)* 8 (2020).

26. Sudha, L. R., and M. Navaneetha Krishnan. "Water cycle tunicate swarm algorithm based deep residual network for virus detection with gene expression data." *Computer Methods in Biomechanics & Biomedical Engineering: Imaging & Visualisation* 11.5 (2023).

27. Sudha, K., and V. Thulasi Bai. "An adaptive approach for the fault tolerant control of a nonlinear system." *International Journal of Automation and Control* 11.2 (2017): 105-123.

28. Patel, Ankit B., and Ashish Verma. "COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence?." *Jama* 323.18 (2020): 1769-1770.

29. Rahul, T. M., and Ashish Verma. "A study of acceptable trip distances using walking and cycling in Bangalore." *Journal of Transport Geography* 38 (2014): 106-113.

30. Kabat, Subash Ranjan, Sunita Pahadsingh, and Kasinath Jena. "Improvement of LVRT Capability Using PSS for Grid Connected DFIG Based Wind Energy Conversion System." *2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications (ICIDEA)*. IEEE, 2022.

31. Kabat, Subash Ranjan. "Cutting-Edge Developments in Engineering and Technology: A Global Perspective." *International Journal of Engineering & Tech Development* 1.01 (2025): 9-16.
32. Das, Kedar Nath, et al., eds. *Proceedings of the International Conference on Computational Intelligence and Sustainable Technologies: ICoCIST 2021*. Springer Nature, 2022.
33. Hazra, Madhu Sudan, and Sudarsan Biswas. "A study on mental skill ability of different age level cricket players." *International Journal of Physiology, Nutrition and Physical Education* 3.1 (2018): 1177-1180.
34. Deka, Brajen Kumar. "Deep Learning-Based Language." *International Conference on Innovative Computing and Communications: Proceedings of ICICC 2023*, Volume 2. Vol. 731. Springer Nature, 2023.
35. Deka, Brajen Kumar, and Pooja Kumari. "Deep Learning-Based Speech Emotion Recognition with Reference to Gender Separation." *International Conference On Innovative Computing And Communication*. Singapore: Springer Nature Singapore, 2025.
36. Obaiah, G. O., J. Gireesha, and M. Mylarappa. "Comparative study of TiO₂ and palladium doped TiO₂ nano catalysts for water purification under solar and ultraviolet irradiation." *Chemistry of Inorganic Materials* 1 (2023): 100002.
37. Obaiah, G. O., K. H. Shivaprasad, and M. Mylarappa. "A potential use γ -Al₂O₃ coated cordierite honeycomb reinforced Ti_{0.97}Pd_{0.03}O₂– δ catalyst for selective high rates in coupling reactions." *Materials Today: Proceedings* 5.10 (2018): 22466-22472.
38. Abbasi, Naiyla Mobin. "Organic Farming and Soil Health: Strategies for Long Term Agricultural Sustainability." *Agricultural Innovation and Sustain Ability Journal E-ISSN 3051-0325* 1.01 (2025): 25-32.
39. MURAD, MUHAMMAD. *Result of MSPH Program Spring Session 2025*. Diss. Jinnah Sindh Medical University, 2025